Area-eecient Upward Tree Drawings
نویسندگان
چکیده
Rooted trees are usually drawn planar and upward , i.e., without crossings and with parents placed above their children. In this paper we investigate the area requirement of planar upward drawings of trees, and present optimal algorithms for constructing such drawings.
منابع مشابه
Area-eecient Algorithms for Upward Straight-line Tree Drawings ?
In this paper, we investigate planar upward straight-line grid drawing problems for bounded-degree rooted trees so that a drawing takes up as little area as possible. A planar upward straight-line grid tree drawing satisses the following four constraints: (1) all vertices are placed at distinct grid points (grid), (2) all edges are drawn as straight lines (straight-line), (3) no two edges in th...
متن کاملUpward Tree Drawings with Optimal
Rooted trees are usually drawn planar and upward, i.e., without crossings and without any parent placed below its child. In this paper we investigate the area requirement of planar upward drawings of rooted trees. We give tight upper and lower bounds on the area of various types of drawings, and provide linear-time algorithms for constructing optimal area drawings. Let T be a bounded-degree roo...
متن کاملPlanar upward tree drawings with optimal area
Rooted trees are usually drawn planar and upward i e without crossings and with out any parent placed below its child In this paper we investigate the area requirement of planar upward drawings of rooted trees We give tight upper and lower bounds on the area of various types of drawings and provide linear time algorithms for constructing optimal area drawings Let T be a bounded degree rooted tr...
متن کاملOptimizing Area and Aspect Ratio in Straight-Line Orthogonal Tree Drawings
We investigate the problem of drawing an arbitrary n-node binary tree orthogonally in an integer grid using straight-line edges. We show that one can simultaneously achieve good area bounds while also allowing the aspect ratio to be chosen as being O(1) or sometimes even an arbitrary parameter. In addition, we show that one can also achieve an additional desirable aesthetic criterion, which we ...
متن کاملOptimum-width upward drawings of trees I: Rooted pathwidth
An upward drawing of a rooted tree is a drawing such that no parents are below their children. It is ordered if the edges to children appear in prescribed order around each vertex. It is well-known that any tree has an upward (unordered) drawing with width log(n+ 1). For ordered drawings, the best-known bounds for the width for binary trees is O(logn), while for arbitrary trees it is O(2 √ ). W...
متن کامل